Characterization of a supersonic plasma source for nanostructured thin film deposition

Stefano Caldirola

Tutor
Prof.ssa Claudia Riccardi
Università degli studi di Milano Bicocca
Introduction

Nanostructured thin films
PIUMA reactor
Research and experiments

Thin films:
- High surface to volume ratio
- Different properties from bulk material
- Applications in microelectronic devices, resistant coating, photovoltaic, sensors, catalysts... and much more

Nanoparticles:
- Building units of thin films
- Can produce films with different morphology or stoichiometry
- No techniques for mass production and assembly
Introduction

Plasma Induttivo Supersonico per Materiali Avanzati

Plasma chamber:
- Inductively Coupled Plasma (Ar and O₂)
- Precursor dissociation

Deposition chamber:
- Supersonic jet expansion
- TiO₂ deposition
Introduction

- Nanostructured thin films
- PIUMA reactor
- Research and experiments

Mass spectrometer: RGA analysis of neutrals, ions at different positions

Characterization of chemical species along the jet
Radiative emission from bound electrons:
• Identification of excited atoms and molecules
• Line intensities due to collision and radiative transitions can be related to T_e and n_e
Theory: Supersonic expansion

\[M(z) = A \left(\frac{z - z_1}{D} \right)^{\gamma - 1} - \frac{1}{2} \frac{\left(\frac{\gamma + 1}{\gamma - 1} \right)}{A \left(\frac{z - z_1}{D} \right)^{\gamma - 1}} \]

\[\frac{P(z)}{P_p} = A^{-2/(\gamma - 1)} \left(\frac{\gamma + 1}{\gamma - 1} \right)^{\gamma/(\gamma - 1)} \left(\frac{\gamma + 1}{2\gamma} \right)^{1/(\gamma - 1)} \left(\frac{z - z_2}{D} \right)^{-2} \]

\[D = \text{nozzle diameter} \]
\[R = \text{pressure ratio} \]
\[z_M = 0.67D\sqrt{R} \]
\[D_M = D \left(0.36R^{0.6} - 0.59 \right) \]
\[\theta_M = 5.3R^{0.6} \]

D = 4.9 mm 2 < R < 40
4.5 mm < Z_M < 21 mm

First results

- Gas
- Plasma
- Precursor

Ar and O₂ measurements at different pressure ratios

- Supersonic expansion theory valid until the shock position for each trend
First results

- Gas
- Plasma
- Precursor
First results

Introduction of organic precursor:
- Dissociation in the plasma chamber
- Fragments acceleration along the supersonic jet
First results

- Gas
- Plasma
- Precursor

Graphs showing the ratios of different species as a function of Z (mm).
First results

Deep characterization of the plasma source has been performed...

...Still much work to do:

• More data acquisition with the mass spectrometer varying different parameters (O$_2$ concentration inside the plasma chamber, TTIP stagnation time inside the chamber, radical analysis)
• Probe measurements along the supersonic jet
• Study of the morphology and the chemical composition of the nanostructured films
Work in progress

Ion Energy Distribution functions:

- Well defined double peak
- Variations along the supersonic expansion

Which mechanisms characterize the energy of the ions?
Work in progress

- IED simulation
- Depositions

Z = 5 mm

Z = 10 mm

Z = 15 mm

Z = 20 mm
Work in progress

Dye-sensitized meso-porous TiO$_2$ film as an electron transporting layer:

• Nanostructured TiO$_2$ morphology can raise electron conduction and cell efficiency
• How important is thin film thickness?